Corporate Presentation

January 2025

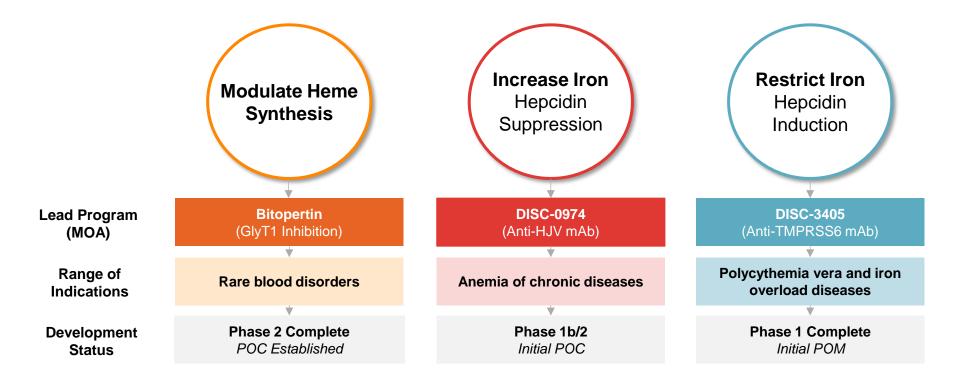
Disclaimer and FLS

This presentation contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995, including, but not limited to, express or implied statements regarding Disc's expectations with respect to its AURORA Phase 2 and BEACON Phase 2 clinical trials of bitopertin and the results thereof, its Phase 1b/2 clinical trial of DISC-0974 in patients with MF and NDD-CKD patients with anemia, its initial SAD data in its Phase 1 clinical trial of DISC-3405 in healthy volunteers; projected timelines for the initiation and completion of its clinical trials, anticipated timing of release of data, and other clinical activities; and Disc's belief about operating expenses and that it will have capital to fund Disc well into 2027. The use of words such as, but not limited to, "believe," "expect," "estimate," "project," "intend," "future," "potential," "continue," "may," "might," "plan," "will," "should," "seek," anticipate," or "could" or the negative of these terms and other similar words or expressions that are intended to identify forward-looking statements. Forward-looking statements are neither historical facts nor assurances of future performance. Instead, they are based on Disc's current beliefs, expectations and assumptions regarding the future of Disc's business, future plans and strategies, clinical results and other future conditions. New risks and uncertainties may emerge from time to time, and it is not possible to predict all risks and uncertainties. No representations or warranties (expressed or implied) are made about the accuracy of any such forward-looking statements.

Disc may not actually achieve the plans, intentions or expectations disclosed in these forward-looking statements, and investors should not place undue reliance on these forward-looking statements. Actual results or events could differ materially from the plans, intentions and expectations disclosed in the forward-looking statements as a result of a number of material risks and uncertainties including but not limited to: the adequacy of Disc's capital to support its future operations and its ability to successfully initiate and complete clinical trials; the nature, strategy and focus of Disc; the difficulty in predicting the time and cost of development of Disc's product candidates; Disc's plans to research, develop and commercialize its current and future product candidates; the timing of initiation of Disc's planned preclinical studies and clinical trials; the timing of the availability of data from Disc's clinical trials; Disc's ability to identify additional product candidates with significant commercial potential and to expand its pipeline in hematological diseases; the timing and anticipated results of Disc's preclinical studies and clinical trials and the risk that the results of Disc's preclinical studies and clinical trials may not be predictive of future results in connection with future studies or clinical trials and may not support further development and marketing approval; the other risks and uncertainties described in Disc's filings with the Securities and Exchange Commission, including in the "Risk Factors" section of our Annual Report on Form 10-K for the year ended December 31, 2023, and in subsequent Quarterly Reports on Form 10-Q. . Any forward-looking statement speaks only as of the date on which it was made. None of Disc, nor its affiliates, advisors or representatives, undertake any obligation to publicly update or revise any forward-looking statement, whether as result of new information, future events or otherwise, except as required by law.

Bitopertin, DISC-0974, and DISC-3405 are investigational agents and are not approved for use as therapies in any jurisdiction worldwide

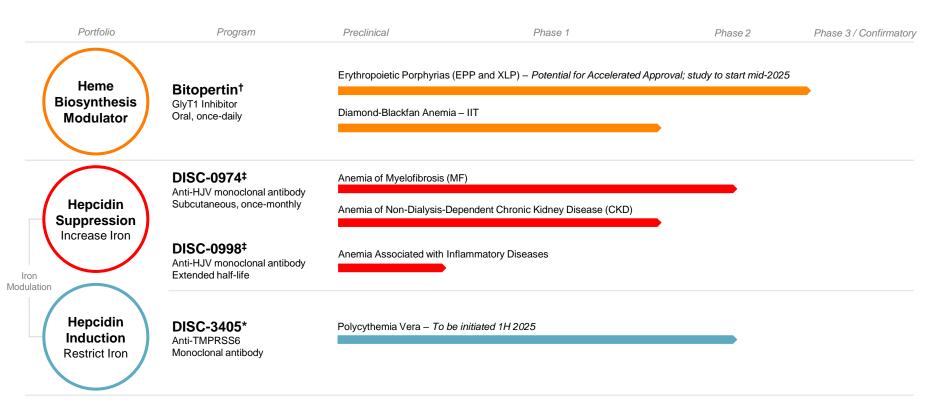
Targeting Fundamental Pathways of Red Blood Cell Biology using Validated Mechanisms


Iron and heme metabolism are critical pathways in hematology with geneticallyvalidated targets

Key points of intervention across a wide range of diseases

Spectrum of Hematologic Diseases Addressable by Disc Portfolio

Severe Ra	re (000s)		Мос	lerate Prevalence (100	0K+)		Widely Prev)	
Diamond-Blackfan	Erythropoietic	Beta-	Anemia of	Myelodysplastic	Sickle Cell	Polycythemia	Hereditary	IBD	CKD
Anemia	Porphyrias	Thalassemia	Myelofibrosis	Syndromes	Disease	Vera	Hemochromatosis	Anemia	Anemia


By Targeting Heme and Iron, Disc's Portfolio Can Address a Wide Range of Hematologic Disorders

Disc's Hematology-Focused Pipeline

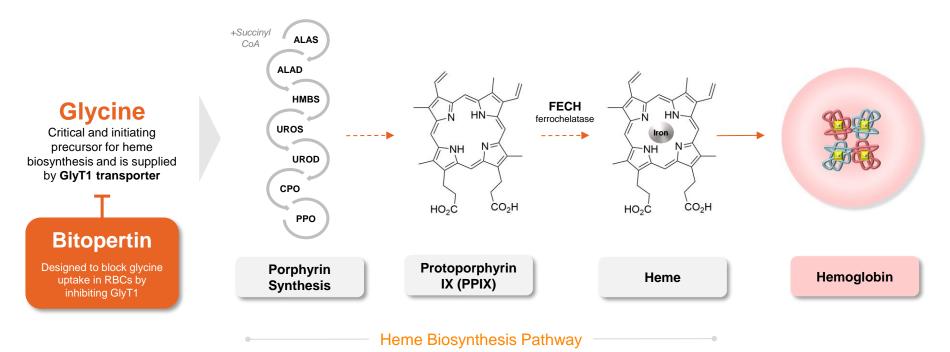
Multiple programs in development with pipeline-in-a-product potential

Projected Upcoming Milestones and Events

Multiple additional data catalysts anticipated in the next 18 months

Program	Indication	H1 2025	H2 2025	2026
Bitopertin Heme Synthesis	Erythropoietic Porphyrias (EPP and XLP)	 Feedback from Type C Meeting with FDA APOLLO Study Initiation 	Guidance on NDA timing	to be provided in Q1 2025
Modulator	Diamond-Blackfan Anemia (DBA)	IIT ongoing		
DISC-0974	Anemia of Myelofibrosis (MF)		Final Phase 2 Data	
Hepcidin Suppression	Anemia of Chronic Kidney Disease (CKD)		Phase 1b Multiple-Dose Data	Phase 2a InitiationInitial Phase 2a Data
DISC-3405 Hepcidin Induction	Polycythemia Vera	Phase 2a Study Initiation		Phase 2a Data

Supported by a strong cash position with runway well into 2027


Bitopertin GlyT1 Inhibitor

Heme Biosynthesis Modulation

Bitopertin: Investigational Oral, Selective GlyT1 Inhibitor

In multiple clinical trials by Roche, bitopertin was observed to modulate heme biosynthesis by blocking uptake of glycine in erythrocytes

Erythropoietic Protoporphyria (EPP)

Rare, debilitating and lifelong condition characterized by extreme pain and damage to skin caused by light

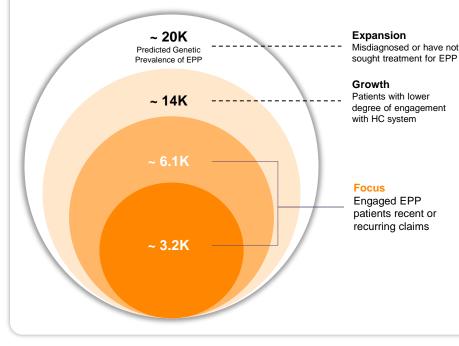
Genetic condition caused by defective heme biosynthesis – deficient enzyme ferrochelatase

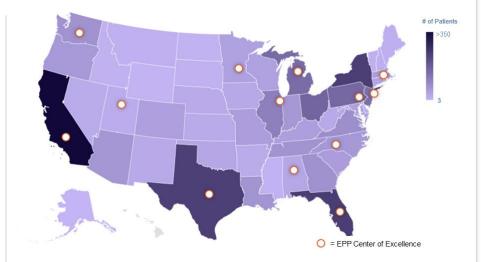
- Lifelong and presents in early childhood •
- Caused by accumulation of toxic metabolite PPIX
- XLP, mechanistically similar disease, also PPIX-related

Debilitating and potentially life-threatening

- Skin: severe, disabling pain attacks (days), edema, burning •
- Hepatobiliary disease: gallstones, liver dysfunction or failure
- Psychosocial well-being (fear, anxiety) and development

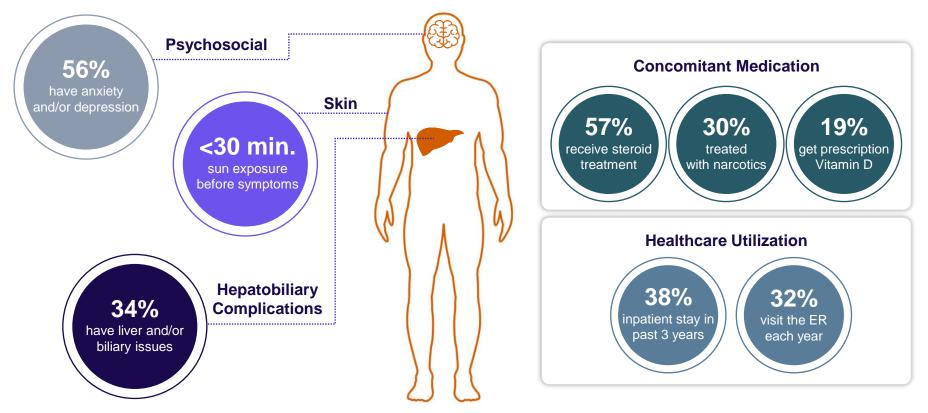
No cure or disease-modifying treatment


- Avoid sun / light, protective clothing, window tinting, Zn/Ti Oxide •
- One FDA-approved agent, afamelanotide, a surgically-implanted tanning agent

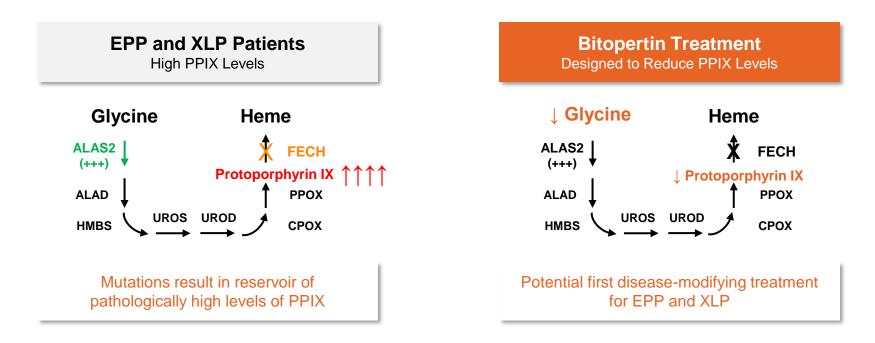

Image sources: Daily Mail Australia (2019); FDA Scientific Workshop on EPP (2016 Buonuomo et al. (2014) Arch Dis Child

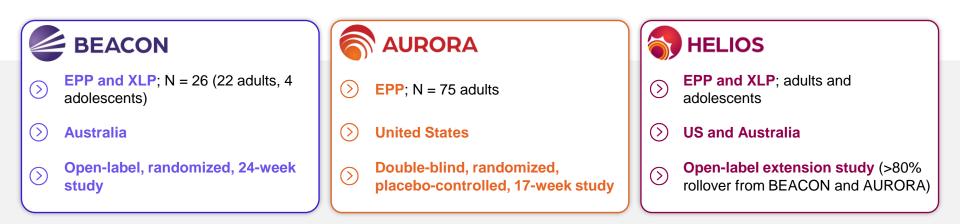
The EPP patient population is well-defined and relatively concentrated, enabling an efficient commercial model

Prevalence of EPP Patients in the US


Distribution of EPP Treatment Centers

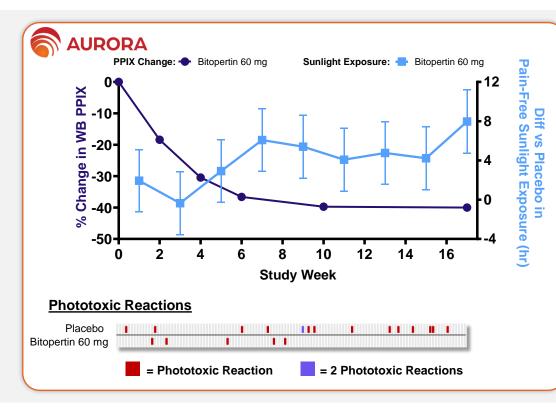
Concentration of patients in key accounts enables a targeted and efficient field force


Real world data confirm EPP has a significant impact on patients' lives across multiple domains


Bitopertin: Potential Disease-Modifying Treatment

Designed to reduce disease-causing PPIX by limiting uptake of glycine into developing erythrocytes

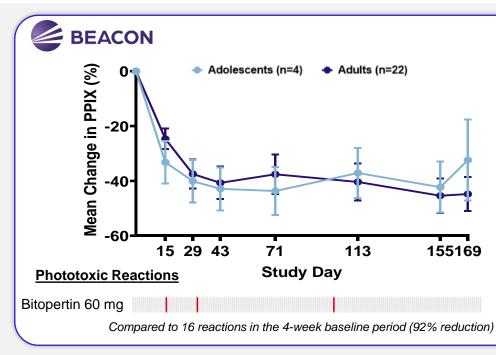
EPP Development Program BEACON, AURORA, and HELIOS Studies



Trial endpoints: Changes in blood PPIX levels, time in daylight without pain, light tolerance, time to prodromal symptom (TTPS), QOL, safety / tolerability

Data availability: Received positive feedback from EOP2 meeting with the FDA opening up a potential pathway to accelerated approval; Update on FDA Type C meeting on confirmatory trial design to be provided in Q1 2025; APOLLO study to begin by mid-2025

Summary of AURORA Results Bitopertin 60 mg



- Significant reductions in PPIX 40% reduction vs baseline
- Time-dependent, improvements in painfree time in sunlight vs placebo
 2x more light time vs baseline
- Significant 75% reduction in rate of phototoxic reactions vs placebo
 Phototoxic reaction-free in last 60 days
- Significant improvement in PGIC vs placebo
 86% reported EPP was 'much better'
- Clear association between PPIX reduction and clinical endpoints

Summary of BEACON Results

Consistent with AURORA data, with similar results in adults and adolescents

Tei	Tertiles of PPIX Change							
PPIX Inc	creased	sed PPIX Decrease						
Light Tolerance Measure (Mean ± SD)	Tertile 3 (-43% to 25%)	Tertile 2 (-53% to -43%)	Tertile 1 (-98% to -53%)					
Cumulative total time in sunlight without pain (hr)	145.6 ± 99.5	190.5 ± 111.6	262.1 ± 160.6					
Average time in sunlight without pain (hr)	0.86 ± 0.6	1.1 ± 0.7	1.6 ± 1.0					
Change from baseline in time to prodrome (min)	85.3 ± 78.8	96.0 ± 109.0	165.5 ± 128.8					

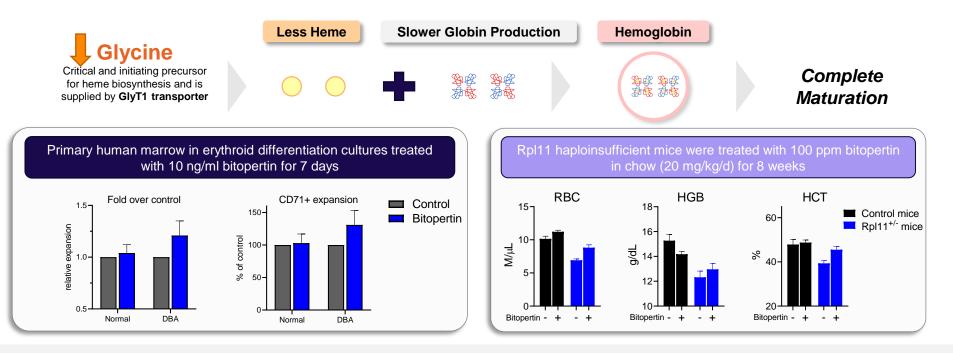
PPIX reduction associated with significant reduction in phototoxic reactions from baseline

PPIX reduction associated with significant improvement in pain-free time in sunlight

Key Takeaways from Positive End of Phase 2 Meeting

Alignment with the FDA on all proposed study parameters

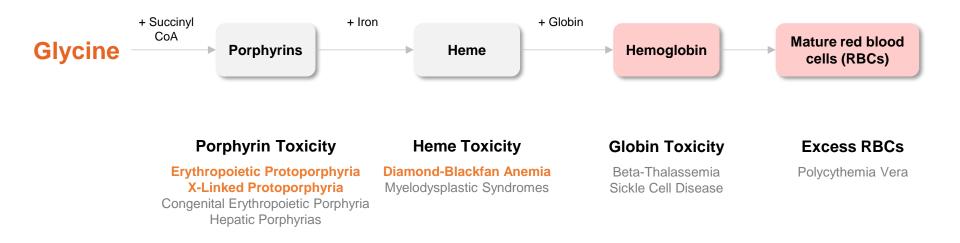
- **FDA** acknowledged that EPP is a serious and potentially life-threatening disease with significant unmet medical need
- **FDA** agreed that average monthly time in sunlight without pain at the end of a 6month treatment period can be used as a primary endpoint
- PPIX reduction may be sufficient as a surrogate endpoint supportive of accelerated approval



Proceeding to APOLLO, a 6-month study with a 60 mg dose of bitopertin in EPP and XLP patients ages 12+, by mid-2025

Bitopertin in Diamond Blackfan Anemia

By slowing the influx of glycine, bitopertin lowers heme production, reducing the amount of excess heme and preventing cell death



Phase 2 trial is underway – sponsored by NIH

Multiple Additional Potential Applications of Bitopertin

Inhibiting heme synthesis with bitopertin has potential to address a wide range of hematologic diseases

Hepcidin Modulation

Iron Homeostasis

Iron is Fundamental to RBC Biology

Hepcidin is a regulatory hormone that plays a central role in iron metabolism and homeostasis

Induced by Inflammation

Hepcidin

Gatekeeper Function: Blocks iron absorption and recycling

GI Tract Iron Intake Spleen Iron Storage



RBC Production in Bone Marrow

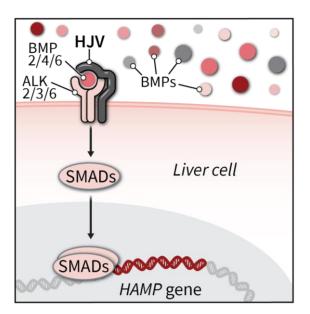
Hepcidin is a Therapeutic Target for Diseases

Dysregulated hepcidin drives a wide range of hematologic diseases

DISC-0974

Anti-HJV mAb Hepcidin Suppression

DISC-0974: Novel Anti-HJV mAb to Suppress Hepcidin Designed to enhance iron availability to address a wide range of hematologic disorders


Significant Opportunity in Anemia of Inflammation

Numerous chronic diseases associated with anemia from high hepcidin

Anemia Types	US Prev.	Est. % Anemic
Myelofibrosis (MF)	16-18.5K	87%
Chronic Kidney Disease (CKD)	37 MM	17-50%
Inflammatory Bowel Disease	1.6 MM	25-35%
Anemia of Cancer	17 MM	35-80%
Systemic Lupus Erythematosus	210K	50%

- Anemia of inflammation is the 2nd most common form of anemia
- Estimated 40% of all anemias are driven by or have an inflammatory component
- **Hepcidin is up-regulated** and correlates with anemia, driven by inflammation

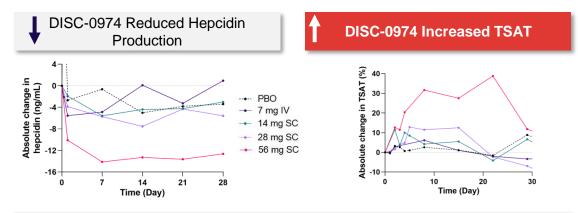
Targeting Hemojuvelin (HJV) to Suppress Hepcidin Critical and specific target for hepcidin expression

Inhibiting Hemojuvelin (HJV) Prevents Hepcidin Expression and Increases Iron

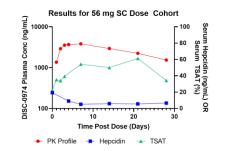
- **Genetic validation** in patients with Juvenile Hemochromatosis (lower hepcidin and elevated iron levels)
 - Loss-of-function mutations in HJV are phenotypically indistinguishable from mutations in *HAMP* (hepcidin) gene
- Functionally specific to hepcidin / iron
- **Tissue specific** expression primarily in the liver

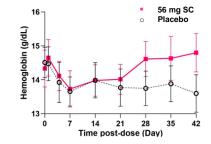
Phase 1 SAD Trial in Healthy Volunteers

Established proof-of-mechanism based on hepcidin and iron parameters

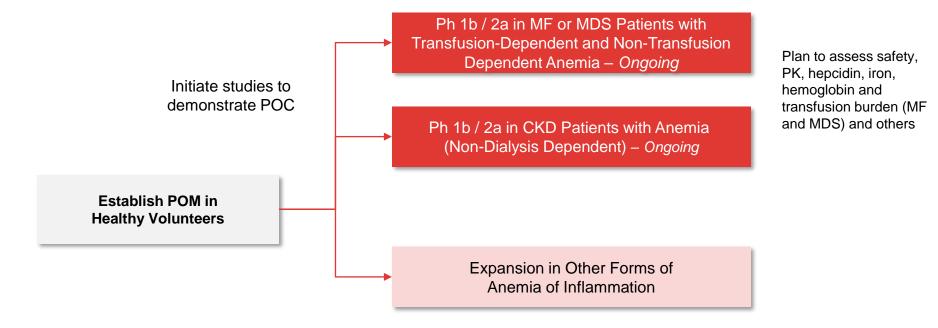

Trial Design

- Single-ascending dose in ≥32 healthy volunteers
- Key outcome measures:
 - Safety and PK

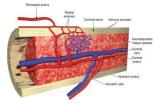

disc


- Hepcidin level, serum iron level, % TSAT
- Dose escalation until TSAT > 40% for at least 2 weeks
- Dose levels: 7 mg dose (IV); 14, 28 and 56 mg doses (SC)

Safety profile was consistent with selective target biology and preclinical studies; no serious or AEs > Grade 1


56 mg pharmacodynamic activity improved key clinical parameters (> 1g/dL Hgb)

TSAT = transferrin saturation; IV = intravenous; SC = subcutaneous

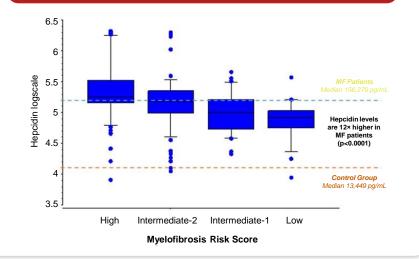

DISC-0974 Development Strategy Aim to demonstrate POC in anemia of MF and CKD

Hepcidin is a Key Driver of Myelofibrosis (MF) Anemia Anemia is severe and prevalent in MF and can limit treatment

Anemia of MF

Est. # Patients

- 25,000 patients (US)
- ~87% are anemic; severe and require transfusion


> Etiology of Anemia

- High hepcidin from inflammation
- JAK inhibitors worsen anemia; loss of marrow function

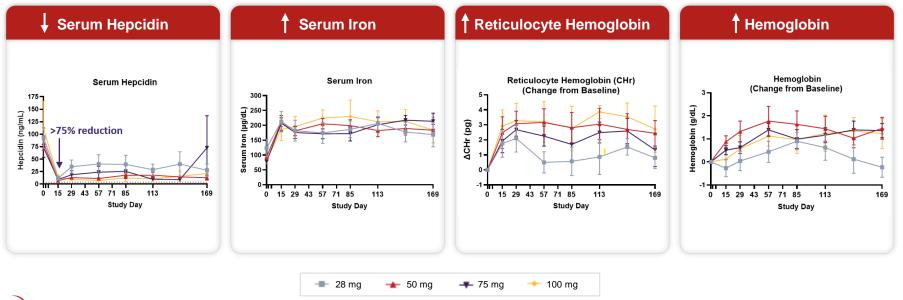
Over the set of the s

- Severe and difficult to treat; high transfusion burden
- · No approved or effective anemia therapy
- · Anemia limits optimal JAK inhibitor treatment

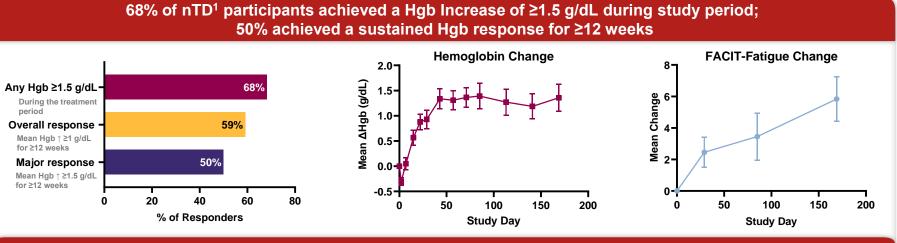
Hepcidin Levels are Elevated in MF ~ 12× higher than control and associated with severity of anemia and transfusion burden

DISC-0974 Anemia of MF Phase 1b Study overview – enrollment data as of October 17, 2024

Screen (28 Da	-						Treatment Period (6 months)						Optional Continuation (Up to 2 years)		
Screen	Baseline D	1 D2	D8	D15	D22	D29	D43	D57	D71		D113	D141	D169/EOS	Q28 Day/EOS	
							14 mg		28 mg		50 mg	75 mg	100 mg	Overall	
Treated, N							1		7		12	9	6	35	
Completed	study, N (%	b)					1 (100)		6 (86)		12 (100)	8 (89)	5 (83)	32 (91)	
Subjects w	vith early wit	hdraw	val (N)	*			0		1		0	0	1	2	
Participatir	ng in contin	uation	, N (%	5)			0		2 (29)		10 (83)	8 (89)	4 (67)	24 (69)	
Concomita	nt JAK inhil	oitor, I	N (%)				0		4 (57)		6 (50)	2 (22)	1 (17)	13 (37)	
Baseline h	epcidin, me	dian (r	nin, m	nax), n	g/mL		48	93	3 (21, 171)	9	0 (9, 156)	47 (23, 188)	64 (12, 375)	69 (9, 375)	
Baseline h	emoglobin,	media	n (miı	n, max	(), g/d	L	8.2	8.4	4 (6.7, 9.3)	8.	4 (5.5, 10)	8.8 (6.7, 9.9)	8.3 (5.5, 9)	8.4 (5.5, 10)	


Study Endpoints

Primary: Safety and tolerability; Secondary: Hematologic response, pharmacodynamic markers of mechanism engagement

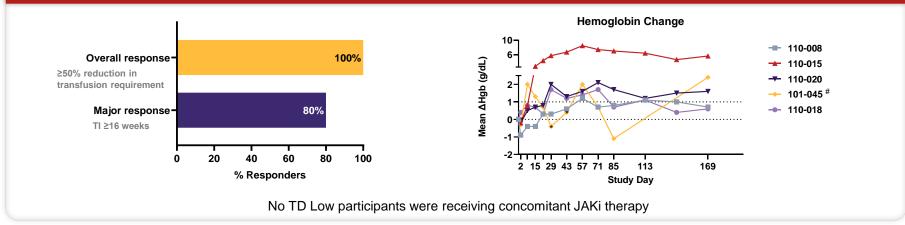


DISC-0974 Anemia of MF Phase 1b Results Pharmacodynamics

- > DISC-0974 demonstrated consistent decreases in hepcidin and increases in serum iron across patients
- > Iron mobilization translated to increased reticulocyte hemoglobin and hemoglobin from baseline

DISC-0974 Anemia of MF Phase 1b Results Hematologic response: nTD participants* (n=22)

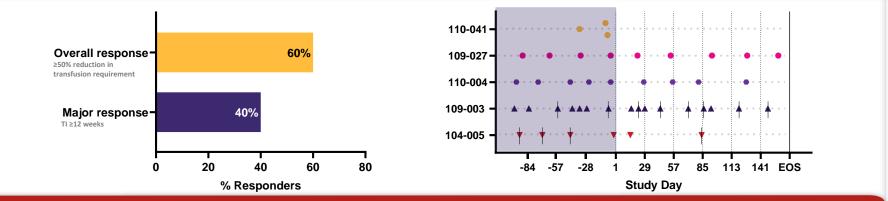
67% of participants (n=9) receiving concomitant JAKi therapy achieved durable response


Response	Mean ± SD (days)
Time to first Hgb increase for major response	36 ± 18
Duration of response during treatment period	150 ± 27

17 of 22 nTD participants have received continuation treatment with median response not reached. Follow-up ongoing (maximum 14.7 months).

DISC-0974 Anemia of MF Phase 1b Results Hematologic response: TD Low participants (n=5)

100% of TD Low¹ participants achieved a ≥50% reduction in transfusion requirement; 80% of participants achieved TI-16 weeks^

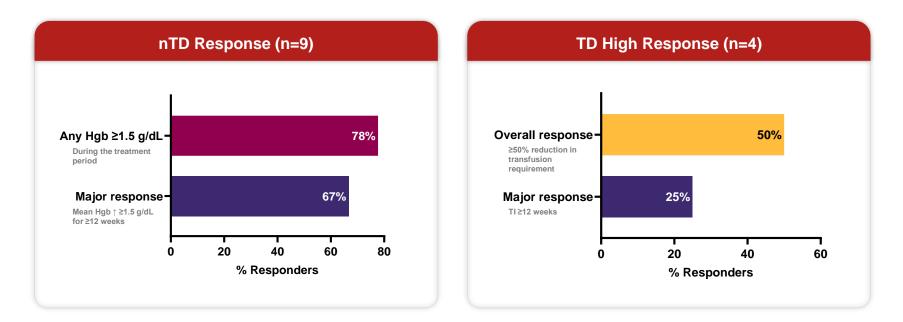

*Indicates transfusion; #Indicates patient receiving transfusion during treatment period.

Response	Mean ± SD (days)		
TD Low duration of major response during treatment period	171 ± 4		
5 of 5 TD Low participants have received continuation treatment with median res	ponse not reached. Follow-up ongoing (maximum 16.6 months).		

disc

DISC-0974 Anemia of MF Phase 1b Results Hematologic response: TD High participants (n=5)

60% of TD High¹ participants achieved a ≥50% reduction in transfusion requirement; 40% of participants achieved TI-12 weeks^


50% of participants (n=4) receiving concomitant JAKi therapy achieved ≥50% transfusion reduction; 25% achieved TI-12

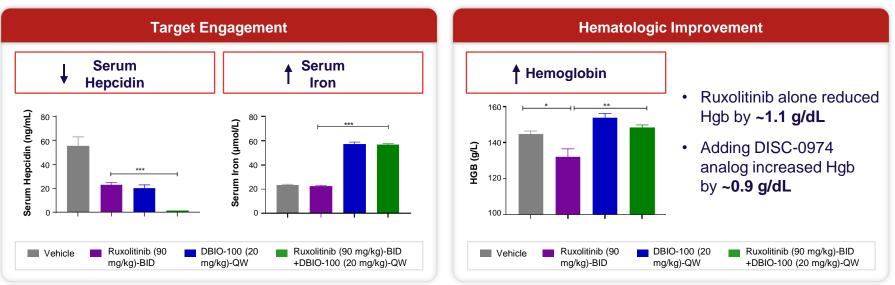
Response	Mean ± SD (days)		
TD High duration of major response during treatment period	127 ± 60		

¹TD High: Participants receiving 3-12 units PRBC in the 84 days prior to screening. ^ with a minimum Hgb of 7 g/dL; 2 TD-high participants were considered not evaluable due to incomplete data entry at time of data cut.; Source: ASH DISC-0974 MF Presentation 34

DISC-0974 Anemia of MF Phase 1b Results Hematologic response with concomitant JAKi therapy (n=13)

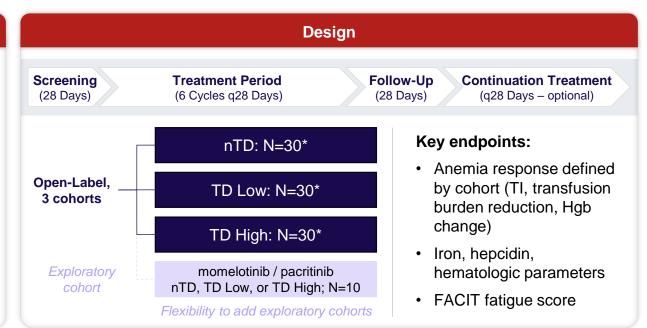
Overall, 54% of participants receiving concomitant JAKi therapy achieved a major hematologic response

DISC-0974 Anemia of MF Phase 1b Results Safety


Preferred Term	28 mg (n=7)	50 mg (n=12)	75 mg (n=9)	100 mg (n=6)	Overall (n=35)
Any TEAE	6 (85.7)	12 (100)	8 (88.9)	6 (100)	32 (94.1)
Related AE	4 (57.1)	6 (50)	5 (55.6)	1 (16.7)	16 (47.1)
SAE	1 (14.3)	2 (16.7)	0	1 (16.7)	4 (11.8)
Common TEAEs in ≥5 participa	nts				
Diarrhea	3 (42.9)	5 (41.7)	5 (55.6)	1 (16.7)	14 (41.2)
Nausea	2 (28.6)	2 (16.7)	2 (22.2)	2 (33.3)	8 (23.5)
Vomiting	1 (14.3)	2 (16.7)	0	3 (50.0)	6 (17.6)
Constipation	0	4 (33.3)	1 (11.1)	0	5 (14.7)
Fatigue	3 (42.9)	3 (25.0)	1 (11.1)	3 (50.0)	10 (29.4)
Lymphocyte count decreased	1 (14.3)	2 (16.7)	2 (22.2)	1 (16.7)	6 (17.6)
Dizziness	0	2 (16.7)	2 (22.2)	3 (50.0)	7 (20.6)
Headache	1 (14.3)	1 (8.3)	1 (11.1)	2 (33.3)	5 (14.7)
Dyspnea	0	1 (8.3)	2 (22.2)	2 (33.3)	5 (14.7)
Hyperhidrosis	1 (14.3)	1 (8.3)	1 (11.1)	2 (33.3)	5 (14.7)
Anemia	5 (71.4)	4 (33.3)	0	0	9 (26.5)
Hypertension	0	3 (25.0)	3 (33.3)	0	6 (17.6)

No TEAEs were reported at the 14 mg dose level. Related AEs occurring in ≥2 participants: diarrhea (n=6); SAEs: arthralgia, cellulitis related to cat scratch, cellulitis related to cat bite, and kidney infection; ≥Grade 3 AEs: anemia, lymphocyte count decreased, platelets decreased, cellulitis, kidney infection (same as SAE), muscular weakness, and headache.; Source: ASH DISC-0974 MF Presentation

DISC-0974 Alleviated Ruxolitinib-Induced Anemia in Mice Wild-type mouse model


- > Treating wild-type mice with ruxolitinib reduced hemoglobin and induced anemia
- > Adding a mouse analog of DISC-0974 reversed these effects, further decreasing hepcidin, increasing serum iron, and increasing hemoglobin

Phase 2 MF Anemia Study Overview

Study Population

- N= ~90 (30 per cohort)
 - 12 patients carried over from Phase 1b*
- Adult patients with MF and anemia
 - Hgb <10 g/dL on ≥3 assessments over 12 weeks, or
 - 1 or more PRBC units transfused in 12 weeks
- Severity: DIPSS INT-1/High
- +/- JAK inhibitor permitted

Phase 2 Dosing: 50 mg, SC, q28 days

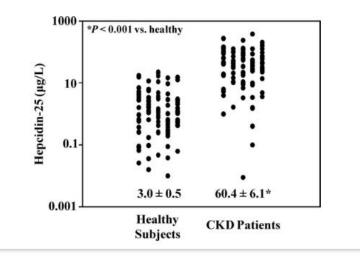
Hepcidin is a Key Driver of CKD Anemia

Pervasive issue that is currently highly under-treated

Anemia of CKD

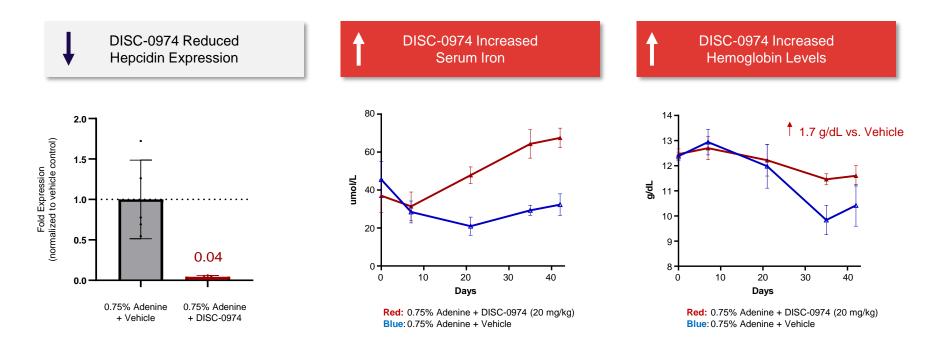
Est. # Patients

 5 to 6 million anemic NDD-CKD patients in the US alone

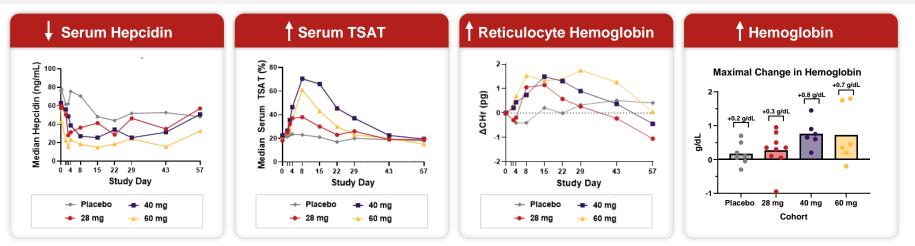

Etiology of Anemia

- High hepcidin from inflammation & poor renal clearance
- Compromised erythropoietin production

Onmet Medical Needs

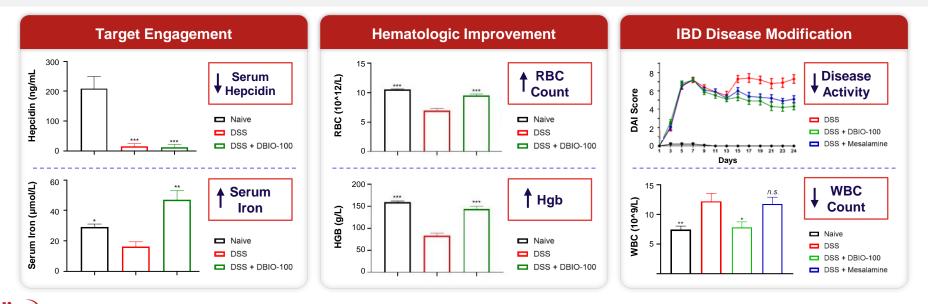

- · Majority patients untreated or under-treated
- ESAs restricted due to safety and black box
- Mean Hb 9.3 g/dL in patients initiating dialysis

Hepcidin Levels Elevated in CKD Patients ~20x higher than healthy subjects and increases with disease severity


DISC-0974 Improved Anemia in Model of CKD Rat Model of Adenine Diet-Induced CKD

DISC-0974 Anemia of NDD-CKD: Hepcidin, Iron, and Hgb 28 mg, 40 mg, and 60 mg SAD cohorts

- Substantial, durable, dose-dependent reduction in hepcidin and sustained increase in TSAT from baseline
- > Early and sustained increase in mean reticulocyte hemoglobin across dose groups
- Increase in mean hemoglobin from baseline across dose groups, with maximal observed individual increases in hemoglobin up to +0.95 g/dL at 28 mg, +1.5 g/dL at 40 mg, and +1.8 g/dL at 60 mg



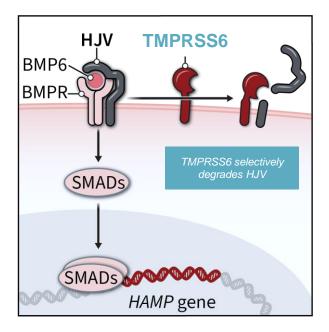
Safety: DISC-0974 demonstrated acceptable safety and tolerability at all evaluated dose levels; the majority of adverse events were deemed not related to DISC-0974, and all adverse events assessed as treatment-related were Grade 1 or 2

DISC-0974 in Other Anemias of Inflammation Inflammatory bowel disease mouse model

- Mouse analog of DISC-0974 supressed hepcidin, increased serum iron, and increased hemoglobin in anemic IBD mice
- Treatment also demonstrated disease-modifying and anti-inflammatory effects

DISC-3405

Anti-TMPRSS6 mAb Hepcidin Induction

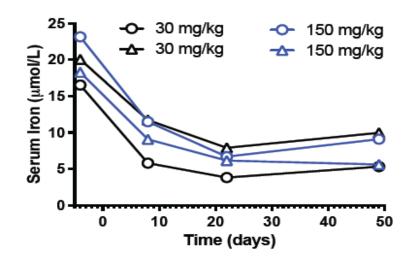

Anti-TMPRSS6 mAb Induces Hepcidin

Designed to limit iron levels with potential to address a wide range of hematologic disorders

Targeting TMPRSS6 to Increase Hepcidin

Potent, specific target controls endogenous hepcidin production

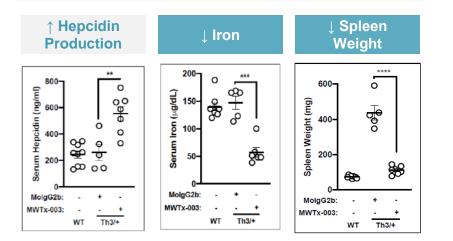
Inhibiting TMPRSS6 with an Antibody Enables Hepcidin Production to Suppress Iron

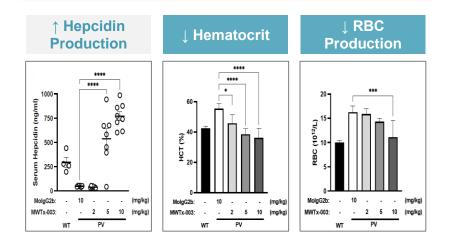

- Genetic validation in patients with IRIDA (Iron-Refractory Iron Deficiency Anemia)
 - LOF TMPRSS6 mutation increases hepcidin and reduces iron availability
- Functionally specific to hepcidin / iron
- Tissue specific expression primarily in the liver

DISC-3405 Effects in Non-Human Primates

Resulted in deep and sustained suppression of serum iron levels

Single dose of DISC-3405 resulted in ~ 70% suppression of serum iron lasting 3 weeks


- Potent PD effects observed across multiple preclinical studies consistent with TMPRSS6 inhibition
 - Hepcidin: 3-4 fold induction
 - Serum iron: ~60-70% suppression
- DISC-3405 demonstrated excellent safety profile in non-clinical GLP safety studies


DISC-3405 in Beta Thalassemia and Polycythemia Vera

Significant effects on hallmarks of disease

Hbb^{Th3/+} Model of Beta-Thalassemia

Jak2^{V617F} model of Polycythemia Vera

Chen B. et al Blood (2021) 138 (Supplement 1): 941, ASH 2021 Annual Meeting; HbbTh3/+ mice were treated with the lead anti-TMPRSS6 antibody at 10 mg/kg IP for 4 weeks; Chen B. et al, ASH 2023 Annual Meeting; JAK2V617F mice were treated with anti-TMPRSS6 mAb MWTx-003 at 2, 5, or 10 mg/kg IP every 4 days for 3 weeks

Iron Restriction in Sickle Cell Disease

Potential for iron restriction through inhibition of TMPRSS6 to benefit SCD by reducing HbS concentration

Growing Body of Evidence for Iron Restriction for Disease Modification in Sickle Cell Disease

1131 Hemoglebhoopathies, Excluding Thalassemia-Basic and Translational Scie Iron Restriction Improves Markers of Disease Severity in the Townes Mouse Model of Sickle Cell Anemia

Nermi Parrow PhD ¹, Pierre-Christian Violet PhD * ², Nisha George PhD * ³, Faris Ali * ¹, Shivam Bhanvadia * ³, Mark Levine MD * ², Robert E Fleming MD ^{4 §}

LETTER TO BLOOD | MARCH 18, 2021

Dietary iron restriction improves markers of disease severity in murine sickle cell anemia

PB2505: THERAPEUTIC PHLEBOTOMY INSTANTLY AFFECTS BLOOD PARAMETERS AND VISCOCITY IN SICKLE CELL DISEASE PATIENTS

1112 Iron Deficiency in HbSC Disease Is Associated with Less Sickle Cell Disease-Related Complications – a Rationale for Repetitive Phlebotomy As Disease Modifying Therapy

RED CELLS, IRON, AND ERYTHROPOIESIS | JANUARY 12, 2023

Dietary iron restriction protects against vaso-occlusion and organ damage in murine sickle cell disease

DISC-3405 in a Townes Model

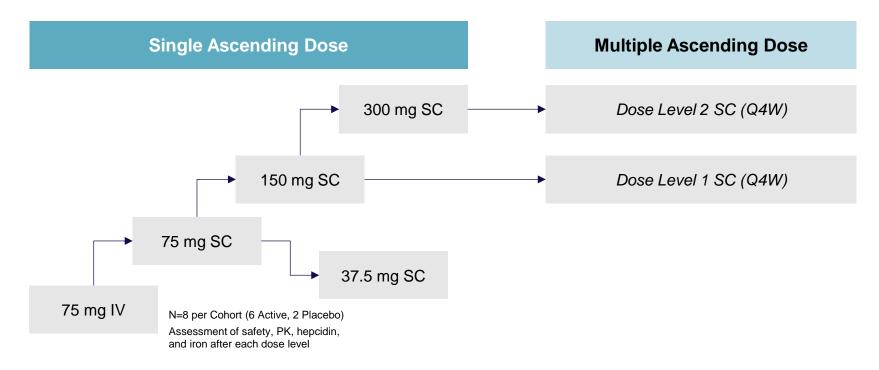
- 3 and 10 mg/kg IP weekly for 8 weeks
- Reduced HbS concentration
- Improved markers of inflammation
- Improved markers of hemolysis

DISC-3405 Development Plans

Phase 1 in healthy volunteers ongoing; aim to advance program into POC studies with focus on polycythemia vera

Phase 1 SAD/MAD in HV Initiated October 2023

Demonstrate proof-of-mechanism (hepcidin, iron, hematologic parameters)

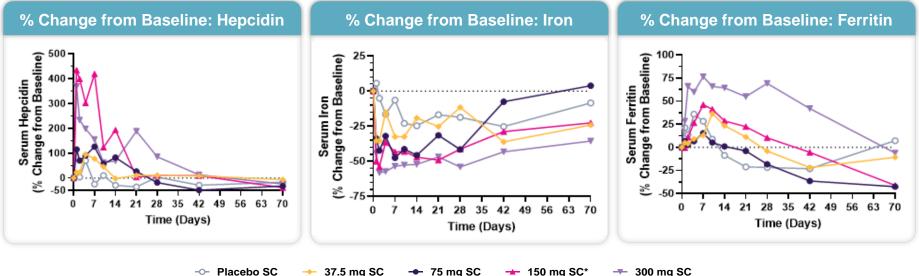

Phase 2 Proof-of-Concept Study in Polycythemia Vera

- Strong proof of therapeutic hypothesis; clarity on regulatory development path
- Assess safety, PK, hepcidin, iron, hematologic parameters; % Hct and requirement for phlebotomy

Additional POC Studies in a Range of Indications

- Hereditary Hemochromatosis
- Beta-Thalassemia
- Myelodysplastic Syndromes
- Sickle Cell Disease

DISC-3405 Phase 1 Healthy Volunteers Study Overview

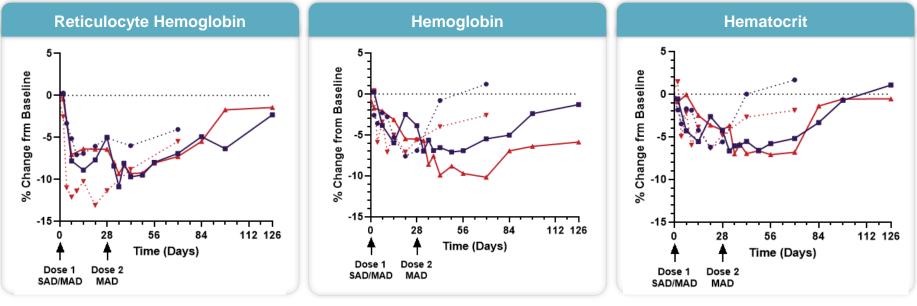

Key Endpoints/Measures: Iron, hepcidin, and other hematologic parameters, safety/tolerability

CONFIDENTIAL

Updated DISC-3405 HV Data: Hepcidin, Iron, and Ferritin

- DISC-3405 produced dose-related increases in serum hepcidin, with corresponding reductions in serum (>)iron across all dose levels
- DISC-3405 resulted in deep reductions in serum iron (ranging from 50-80% from baseline) that were (\mathcal{D}) sustained and support a once-monthly SC dosing regimen

Placebo SC -0-



- 75 mg SC 150 mg SC*

*One participant randomized to 150 mg SC was excluded from PD analysis due to history of anemia and recent hemorrhoidal bleeding, not disclosed prior to enrollment, deeming the participant ineligible; Source: ASH 2024 Poster

Updated DISC-3405 HV Data: Hematologic Response

Single and repeat dosing of DISC-3405 demonstrated meaningful reductions in hematologic parameters (reticulocyte hemoglobin, hemoglobin, and hematocrit)

····• 75 SC, SAD --- 75 SC MAD

150 SC SAD* ____ 150 SC MAD

SC = subcutaneous; *One participant randomized to 150 mg SC (SAD) was excluded from PD analysis due to history of anemia and recent hemorrhoidal bleeding not disclosed prior to enrollment, deeming the subject ineligible.; Source: ASH 2024 Poster

Disc Continues Strong Growth Trajectory Towards Becoming a Leading Hematology Company

Significant Accomplishments in 2024

Important Catalysts in 2025

Bitopertin	 Positive data across two Phase 2 studies Encouraging EOP2 Meeting with path to accelerated approval 	•
DISC-0974	 Updated positive data in anemia of MF Phase 2 initiation in anemia of MF Positive SAD data in anemia of CKD 	• • F • F
DISC-3405	Positive healthy volunteer dataPreclinical data in sickle cell disease	• F • F

- Guidance on Type C meeting with FDA
- Initiation of APOLLO study
- · Initial Phase 2 data in anemia of MF
- Phase 1b multiple-dose in anemia of CKD
- · Preclinical efforts on additional indications
- Polycythemia vera as first indication
- · Preclinical efforts on additional indications

-Supported by a strong cash position with runway well into 2027

Thank You

